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Two-dimensional periodic permanent waves in shallow water 

By P. J. BRYANT 
Mathematics Depart,rnent, University of Canterbury, Christchiirch, NPW Zcalnnd 

(Received 29 Janiiary 1981 and in revised form 26 May 1981) 

When two periodic permanent wave trains on shallow water intersect obliquely, the 
regions of intersection are two-dimensional waves of permanent shape. This shape 
varies from a nearly linear superposition of the two wave trains a t  large angles of 
intersection between the wave normals, to a structure predominantly transverse to 
the direction of propagation at small angles of intersection. The latter shape is found 
to be governed by the two-dimensional Korteweg-de Vries (Kadomtsev-Petviashvili) 
equation. The two-dimensional permanent waves are stable to periodic disturbances 
parallel to their direction of propagation, but are unstable to certain oblique periodic 
disturbances. 

1. Introduction 
Modern techniques for solving nonlinear differential equations have been applied 

with success to the problem of interacting solitary waves (reviewed by Miles 1980). 
The interaction is weak at  large angles of intersection between the wave normals 
(Benney & Luke 1964), when it is described in magnitude by the product of the ampli- 
tude parameters. The interaction becomes stronger a t  smaller angles of intersection 
(Miles 1977a), until at a certain small angle resonance occurs between the two incident 
waves and the resulting wave (Miles 1977b). The analytical solution for the inter- 
action is singular a t  angles less than the resonance angle. The present investigation is 
concerned with the shape and properties of the two-dimensional waves formed by two 
periodic wave trains intersecting at  angles a t  and below the resonance angle. 

I n  the equivalent problem of reflection of a solitary wave by a vertical wall, experi- 
ments (Melville 1980) a t  small angles between the wave normal and the wall reveal 
that the apex of the incident and reflected waves moves away from the wall, being 
joined to the wall by a third wave named the Mach stem. Melville found that as the 
angle between the wave normal and the wall is decreased, regular reflection is replaced 
by Mach reflection a t  about the resonance angle predicted by Miles. Melville identified 
a problem with the momentum balance at  the end of the growing reflected wave, but 
this difficulty is irrelevant to the present investigation. 

The method of analysis used below is to  describe the water surface by a double 
Fourier series constructed from the linear harmonics, with amplitudes varying slowly 
with time as a result of nonlinear interactions. A set of first-order nonlinear differential 
equations for the rates of change of the Fourier amplitudes is obtained. This reduces 
to a set of nonlinear algebraic equations for the Fourier amplitudes when the ampli- 
tudes are steady in a moving frame of reference. The set is solved numerically by the 
Newton-Raphson method. 

A model equation has been proposed by Kadomiscv & Petviashvili (1970) which 
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is applicable to waves on shallow water having a weak spatial variation transverse to 
the direction of propagation. Johnson (1950) named this equation the ‘nearly plane’ 
Korteweg-de Vries equation, and showed how it  is related to other forms of the 
Korteweg-de Vries equation for waves on shallow water. Two-dimensional permanent - 
wave solutions of this equation are obtained here by the same method of analysis as 
is described above. These are found to agree well with the diIect permanent-wave 
solutions when the spatial variation is weak. Krichever & Novikov (1978) have found 
solutions of the Kadomtsev-Petviashvili equation by methods of algebraic geometry. 
It has not been possible to relate their solutions to those found here. 

A linear-stability analysis is made of the solutions obtained for two-dimensional 
permanent waves at  small angles of intersection of the original periodic wave trains. 
The stability properties are found to be similar in form to those of one-dimensional 
permanent waves, with instability occurring only for certain periodic disturbances 
oblique to the propagabion direction of the permanent waves. 

2. Permanent waves 
Periodic waves of wavelength 27~1 along and 27~L transverse to  the direction ofwave 

propagation are generated in water of mean depth h bounded above by a free surface 
and below by a smooth horizontal bed. The principal non-dimensional ratios are 
e = a/h, ,u = h/l ,  and 6 = 1/L, where a is a measure of wave amplitude. The horizontal 
co-ordinates x,and x2 in the mean freesurface are measured in units of 1 and L respect- 
ively, the vertical co-ordinate y in units of h, and time t in units of Z/c, where co = (gh): 
is the linear long-wave velocity. The governing equations for the non-dimensional 
surface displacement ~ ( x , ,  x2, t )  and velocity potential q5(xl, x2, y, t ) ,  with the upper 
boundary conditions expressed as perturbation expansions in 6, are 

Q z l z , + ~ 9 z 1 1 , + ( 1 / P 2 ) ~ y y  = 0 ( - 1  < Y  < 01, (2.la) 

Q y =  0 ( y =  - - I ) ,  (a .  1 b )  

(2.1 c) 

( 2 . 1 4  

T t  - (1 /P2)  4 y  + 47Qz,)z, + m T q 5 z z ) z z  = W) (Y = O ) ,  

7 + 4 t  + 8 W 1  + F$;2, + fl/P2) 4;) + c$q5yt = O(@) (Y = 0). 

Permanent-wavc solutions are sought, of the form 

w m  

7 = C a ( k ) c o s ( k , x , + k , x , - k , c t ) ,  
kl=O kz= -m 

with a corresponding expression for 4, when it  may be shown that 

(k,c-w(k))a(k) = &cZR(k,  - l )a( l )a(k-1)+s~R(k,1)a( l )a(k+1)+O(e2) ,  
I I 

(2.3) 

where k = ( k l ,  ah2), Ic = (k2, + Pk:)*,  w(k) = {(k/p) tanh kp}$ and the derivation and 
interaction coefficients are described in the appendix. The wave velocity c and the 
harmonic amplitudes a(k)  are the solutions of the set of nonlinear equations (2.3) 
together with the kinematic equation arising from the definition of E .  The latter 
equation is taken arbitrarily to be 

(2.4) 7/(ct, 0, t )  - ~ ( c t  + in, 0, t )  = 2 .  
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The wavelengths in the x1 and x, directions may be written - T I  < xl-ct < TI ,  

- T I  < x, 6 TI respectively. The geometry is then such that along each of the principal 
diagonals x, - ct = & x,, there are two wavelengths as x1 - ct, x, traverse the above 
intervals. This means that 

a(k) = afk,, Sk,) = 0 (k, k,odd). (2.5) 

Symmetric two-dimensional permanent waves, such as occur when two equal wave 
trains intersect, also satisfy 

(2.6) a(k1, - 6k2) = a(k1, Sk,). 

Symmetric-wave solutions of the above set of algebraic equations (2.3) are obtained 
numerically by a generalized Newton-Raphson method. Solutions are found first for 
a given number of harmonics 0 < k,  < n,, - n, < k,  < n,, then n, and n2 are increased 
step by step until the solution is unchanged to 4 decimal places by the addition of 
further harmonics. Non-symmetric-wave solutions, such as result from the intersection 
of two unequal wave trains, were not calculated because of problems with computer 
capacity when (2.6) was not applicable. 

3. Kadomtsev-Petviashvili equation 

weakly dispersing media. This K P  equation, with the present notation, is 
Kadomtsev & Petviashvili (1970) proposed a model equation for solitary waves in 

It is the sum of the zero- and first-order terms in a perturbation expansion in the 
three small independent parameters E ,  p2, S2 for waves progressing in the forward xl 
direction (Johnson 1980). The dispersion relation satisfied by the linear t,erms of this 
equation contains t,he zero- and first-order terms in the perturbation expansion in 
p2, 6, (3.2) of the full linear dispersion relation (following (2.3)).  

When wave solutions of (3.1) with the same form as ( 2 . 2 )  are sought, the nonlinear 
equations governing a(k) are the same as (2.3) except that the frequency w(k) is 
replaced by 

k1 - $p2k! + $S2ki/kl ,  

and the interaction coeficients R are replaced by 

R(k,1) = $kl. (3.3) 

Symmetric-wave solutions of the set of nonlinear equations are obtained by the same 
procedure as that described in $ 2 .  

4. Examples 
Three examples are illustrated in figures 1 ,  2 and 3, each with .c = 0.05 and p = 0.1 

but with three different values of 6. Each is a solution of the nonlinear equations in 
9 2 where no restriction is placed on the values of p and 6. The corresponding solutions 
of the Kadomtsev-Petviashvili equation have been calculated, but only the first 
example at the largest value of S exhibited any significant differences from the figures. 
The central peak of the K P  solution in this example is higher and sharper than in the 
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FIGURE 1. 

(ir, -fa, 
Permanent, wave a t  B = 0.05, y = 0.1, S 

Vertical magnification 100n. 
= t a n 0  .15n = 0.51. 

- 

(-$a3 -w (&T, -fa) L-4 
FIGURE 2 .  Permanent wave at B = 0.05, = 0.1, S = tan 0.ln = 0.32. 

Vertical magnification 100rr. 

corresponding direct solution, and the KP wave travels faster. These features of the 
KP solutions become more pronounced a t  larger values of 6 than those used in the 
figures. 

The difference between the KP solutions and the direct solutions in figures 2 and 3 
is less than 1 yo in each example. It should be noted that the example in figure 1 is 
at about tJhe lowest value of 6, for the given c: andp, for which a central stem transverse 
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(-in, -in) 

FIGURE 3. Half of the permanent wave at E = 0.05, y = 0.1, 6 = tan 0 . 0 4 ~  = 0.13. 
Vertical magnification loon. 

to the direction of propagation is not apparent in the figure. At the lower values of 6 
illustrated in figures 2 and 3 a central stem occurs, when the KP solution is in good 
agreement with the direct solution. Miles ( 1 9 7 7 ~ )  gave a resonance criterion for the 
dividing line between regular and singular interactions of two oblique solitary waves. 
It is not possible to apply this criterion exactly to  the examples illustrated because 
the amplitudes of the interacting waves cannot be defined unambiguously. If the 
amplitude is taken to be that a t  the four corners of each of the figures, the division 
between regular and singular interactions lies between the examples in figures 1 and 2. 
Miles’ criterion provides an approximate dividing line between permanent waves with 
and without a central stem, corresponding respectively to permanent waves which 
are and which are not modelled satisfactorily by the KP equation. 

As S decreases towards zero, the shape of the two-dimensional permanent waves 
tends towards that of one-dimensional permanent waves transverse to the direction 
of propagation. The wave velocity decreases as S decreases, tending towards that of 
one-dimensional waves. The two-dimensional permanent-wave solutions of the ICP 
equation do appear to tend uniformly to  the one-dimensional permanent-wave 
solutions of the KdV equation as S tends to zero. 
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As p decreases towards zero, the effective width of the wave in the x1 direction is a 
decreasing proportion of the wavelength 2n1 in this direction, but the effective length 
ofthe wave in the x2 direction remains an almost constant proportion of the wavelength 
2nL in this direction. The two-dimensional periodic permanent waves do not appear 
to tend towards any form of two-dimensional solitary wave lump as the wavelength 
tends to infinity in all directions. 

5. Wave stability 
The linear stability of the wave solutions may be investigated by making the time- 

dependent Fourier amplitudes A(k) equal to the sum of the permanent-wave ampli- 
tudes a(k)  and a small perturbation to them, substituting in the evolution equations 
(A 6) for A(k), linearizing in the small perturbations, and seeking normal-mode 
solutions of the set of first-order linear differential equations governing the small 
perturbations. The results of the calculations are similar in form to those obtained 
previously (Bryant 1978) for one-dimensional periodic waves in shallow water. The 
two-dimensional waves are stable to periodic perturbations in the direction of 
propagation (xl axis), but are unstable to  perturbations in a narrow band of wave- 
numbers oblique to  the direction of propagation. 

The explanation for the region of instability appears to be the same as that advanced 
in Q 5 of Bryant (197S), namely that the sum of the side-band disturbance harmonics 
k - K, k + K, where k = ( k l ,  0 ) ,  interacts resonantly with the harmonic of the permanent 
wave with wavenumber 2k. Resonance occurs in the neighbourhood of disturbance 
harmonics K satisfying 

w ( k  - K) + w(k + K) = 2k. c = 2k1c. 

The solution of (5.1) is found to be close to  the region of instability in all examples 
calculated, agreement being improved by allowing for the effect of forward particle 
velocities in the wave itself. The unstable growth is caused by the application to  the 
permanent waves of a periodic modulation with a length scale large compared with 
2nl ( K  < kl), at  an angle to the direction of propagation near that determined by (5.1). 
The modulation grows initially with a time scale inversely proportional to  c2. McLean 
(1982) describes a range of instabilities of one-dimensional permanent waves in shallow 
water, of which the above type of instability is the first. 

(5.1) 

Appendix 

solutions to the set (2.1) are sought with the form 
The derivation of the set of equations (2.3) from the set (2.1) is summarized. When 

7 = 4 2 A(k) expi(k.  x - w ( k )  t } +  *, 

q5 = +xB(k)coshpk(l  +y)expi(k.x-w(k)t}+*, 

(A 1) 

(A 2) 

k 

k 

(with the notation of 6 2, and x = (xl, x2), * denotes complex conjugate) the linear 
solution, in which all amplitudes A and B are constants, is 

A(k)-io(k) coshpukB(k) = O(e), 

w ( k )  = ( ( k / p )  tanh,uk}&. 
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Let B denote the time-differentiation operator. Then DA(k), DB(k) are O ( E ) ,  since 
A(k), B(k) change in time only as a result of nonlinear interactions, and the system is 
such that only forward-progressing waves are significant. When the Fourier series 
(A i), (A 2) are substituted into (2.1 c), (2.1 d) and O(s)  terms retained explicitly, a pair 
of equations for DA(k), DB(k), A(k), B(k) is obtained. The quadratic terms of O ( E )  
may be expressed solely in terms of amplitudes A by use of (A 3). The differential 
equation for A(k), found by elimination of BB(k), B(k) from the linear terms of the 
above pair of equations, is 

D2A(k) - 2iw(k) DA(k) 

= -&x{w(k-l)+w(l)+w(k)}R(k, -l)A(l)A(k-1) x exp[-i(w(k-1) 
1 

+w(l)-o(k)}t]-~C{w(k+l) -w(l) +w(k)}R(k, l)A*(l)A(k+l) 
1 

x exp [ - i{w(k + 1) - w(1) - o(k)} t ]  + O(e2) ,  
where 

{w(k + I) - @(I)} {k. h ( k  + 1) + k .  (k + 1) @(I)} + w2(k) 1. (k + 1) 
2w(l) w(k + 1) {w(k) + w(k + 1) - ~ ( 1 ) )  

R(k,l) = 

- p2W2(k) (~ ' (1)  - ~ ( 1 )  w(k + 1) + w2(k + l)} 
2{w(k) + w(k + 1) - ~ ( 1 ) )  9 

and w( - 1) is to be interpreted as - w(1) in calculating R(k, - 1). (There is an incorrect 
sign in equation (2.3) for R(k, 1) in Bryant (1978).) 

It is noted that, t,he solution for t,he linear terms in (A 5) is 

A(k) = c1 + c,exp {2iw(k) t}, 

where cl,cz are arbitrary constants; which, when substituted into equation (A l) ,  
expresses 7 as a sum of forward- and backward-progressing waves. The int,egrating 
factor for (A 5) is exp { - 2iw(k) t}, yielding 

DA(k) = - gie 2 R(k, - 1) A(1) A(k - 1) exp [ -i{o(k- 1) + w(1) - w(k)}t] 
1 

- i e ~ R ( k , l ) A * ( l ) A ( k + l ) e x p [ - i { w ( k + 1 ) - ~ ( l ) - w ( k ) } t ] + O ( e 2 )  
1 

(A 6 )  
for forward-progressing waves. It is inconsistent to integrate again since 

w(k - 1) + w(1) - w(k) 

are of a magnitude comparable with E for some k and 1. 

and o(k + 1) - w(1) - o(k) 

Equations (2.2) and (2.3) are related to (A 1) and (A 6) respectively by 

A(k) = a(k)expi{w(k)-k,c}t, (A 7 )  

where all a(k) are constants. The conditions of the derivation of (A 6) are satisfied by 
(A 7) since w(k) - k,c is O ( E )  for the dominant harmonics with a(k) = O(i) ,  these 
being the harmonics generated near resonance, while away from resonance w(k) - k,c 
is O(1) with a(k) = O ( E ) .  
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